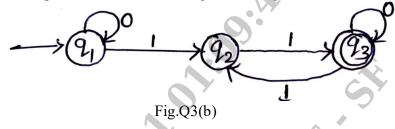


(iii) $L = \{w | w \in \{a, b\}^* \text{ whose second symbol from the right end is 'a'}$ (04 Marks)


1 of 3

2. Any revealing of identification, appeal to evaluator and/or equations written eg, 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

17CS54

b. Obtain the regular expression for the following FSM using Kleene's theorem.

(10 Marks)

- Show that the following languages are not regular: 4 a. (i) $L = \{a^n b^n \mid n \ge 0\}$ (ii) $L = \{1^p | p \text{ is prime}\}$ (08 Marks) Simplify the following regular expression $((a^* \cup \phi)^* \cup aa) (b \cup bb)^* b^* ((a \cup b)^* b^* \cup ab)^*$ b. (06 Marks) c. If L₁ and L₂ are regular languages, then prove that L₁ \cup L₂, L₁ \cdot L₂ and L^{*}₁ are regular languages. (06 Marks) Obtain a grammar to generate each of the following languages: 5 a. (i) $L = \{a^n b^{2n} : n \ge 0\}$ (ii) $L = \{ww^R where w \in \{a, b\}^*\}$ (05 Marks) b. If the following grammar ambiguous? $S \rightarrow aS|X$
 - (05 Marks)
 - (10 Marks)

(10 Marks)

- 6 a. Define PDA and obtain a PDA to accept a string of balanced parenthesis. (04 Marks)
 b. Construct a PDA to accept the language L = {wcw^R | w ∈ {a, b}*}. Draw the graphical representation of this PDA. Show the moves made by this PDA for the string "abCba"
 - c. Convert the following grammar into equivalent PDA.

c. Convert the following grammar to Chomsky Normal Form (CNF)

 $E \rightarrow E + T$

 $X \rightarrow aX|a$

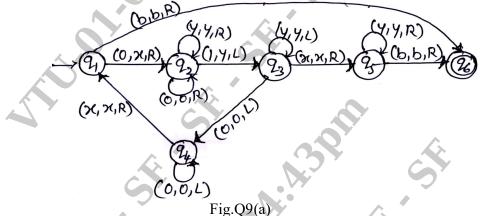
 $S \rightarrow aACa$ $A \rightarrow B \mid a$ $B \rightarrow C \mid c$ $C \rightarrow cC \mid \in$

- $E \rightarrow T$
- $T \rightarrow T * F$
- $T \rightarrow F$
- $F \rightarrow (E)$
- $F \rightarrow id$

(06 Marks)

- 7 a. If L_1 and L_2 are Context Free Languages (CFL's), then prove $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* are context free languages. (05 Marks)
 - b. State and prove pumping lemma for context free languages and show that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context free. (10 Marks)
 - c. Explain with neat diagram the working of turing machine model. (05 Marks)

17CS54


Explain with neat diagram, the model of Linear Bounded Automata (LBA). 8 (06 Marks) a. b.

(06 Marks)

Design a TM (Turing Machine) that accepts $L = \{0^n 1^n | n \ge 1\}$. Consider the turing description given in the following table. Draw the computation sequence c. of the input string "00" (08 Marks)

of the input string ov .			
Present State	Tape symbols		
	b	0	1
$\rightarrow q_1$	$1 L q_2$	$0 \mathbf{R} \mathbf{q}_1$	
q_2	b R q ₃	$0 L q_2$	1 L q ₂
q ₃	-	b R q ₄	b R q ₅
q_4	0 R q ₅	0 R q ₄	1 R q ₄
q 5	$0 L q_2$	C	

M is a turing machine represented by the transition diagram. Obtain the computation 9 a. sequence of M for processing the input string "0011". {Refer Fig.Q9(a)]

(06 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

- Design a Turing Machine (TM) to recognize all strings consisting of an even number of 1's. b. (04 Marks)
- Design a Turing Machine (TM) to recognize the language. $L = \{1^n 2^n 3^n | n \ge 1\}$ c. (10 Marks)

10 Write short notes on:

- Decidable and undecidable languages a.
 - Halting problem of TM b.
 - Post-correspondence problem c.
 - d. Church-Turing thesis

3 of 3